ESE Research Strategy: -- selected charts -- Jack Kaye ESE Research Division Presented to ESSAAC December 5, 2000 # ESE Strategy Revised List of Questions How is the global Earth system changing?(Variability) - How are global precipitation, evaporation, and the cycling of water changing? - How is the global ocean circulation varying on interannual, decadal, and longer time scales? - How are global ecosystems changing? - How is stratospheric ozone changing, as the abundance of ozonedestroying chemicals decreases and new substitutes increases? - What changes are occurring in the mass of the Earth's ice cover? - What are the motions of the Earth and the Earth's interior, and what information can be inferred about Earth's internal processes? #### What are the primary forcings of the Earth system? (Forcing) - What trends in atmospheric constituents and solar radiation are driving global climate? - What changes are occurring in global land cover and land use, and what are their causes? - How is the Earth's surface being transformed and how can such information be used to predict future changes? #### How does the Earth system respond to natural and human-induced changes?(Response) - What are the effects of clouds and surface hydrologic processes on Earth's climate? - How do ecosystems respond to and affect global environmental change and the carbon cycle? - How can climate variations induce changes in the global ocean circulation? - How do stratospheric trace constituents respond to change in climate and atmospheric composition? - How is global sea level affected by climate change? - What are the effects of regional pollution on the global atmosphere, and the effects of global chemical and climate changes on regional air quality? #### What are the consequences of change in the Earth system for human civilization?(Consequences) - How are variations in local weather, precipitation and water resources related to global climate variation? - What are the consequences of land cover and land use change for the sustainability of ecosystems and economic productivity? - What are the consequences of climate and sea level changes and increased human activities on coastal regions? #### How well can we predict the changes to the Earth system that will take place in the future?(Prediction) - How can weather forecast duration and reliability be improved by new space-based observations, data assimilation, and modeling? - How well can transient climate variations be understood and predicted? - How well can long-term climatic trends be assessed or predicted? - How well can future atmospheric chemical impacts on ozone and climate be predicted? - How well can cycling of carbon through the Earth system be modeled, and how reliable are future atmospheric concentrations of carbon dioxide and methane by these models? #### Table of Observational Parameters: Prediction | Parameter /
Question | Implementation
Detail | In Situ
Measurement | Technical
Readiness | Operational
Potential | Partnership
Potential | |---|---|---|--|---|--| | Tropospheric
Winds (P1) | Active Doppler lidar
remote sensing | rawinsondes
(NOAA, WWW) | Technical
developments,
demonstration
needed | Very high, when demonstrated | Commercial data purchase possible | | Ocean Surface
Winds (P1) | Active µwave
technique | ships, buoys
(NOAA. WWW) | Demonstrated by
NSCAT &
SeaWinds | NPOESS
requirement
nominally fulfilled
by passive sensor | Seawinds
cooperation with
Japan;
EUMETSAT data
acquis. | | | Passive µwave
radiometry/polarimet
ry | | Windsat/Coriolis
demonstration
funded by DOD,
USN, NPOESS | NPOESS
commitment | Possible | | Global
Precipitation (P1) | Requires
Constellation for
Good Time
Resolution | Rain gauges,
weather radar
(NOAA, WWW) | Demonstrated via
TRMM | Limited | Excellent –
several needed | | Freeze-Thaw
Transition (P1) | Need to assess in all
cloud and vegetation
conditions | Not a routine
measurement | Awaiting
demonstration | Desired; subject to operational viability | Possible | | Lightning Rate (P1) | Requires
geostationary
implementation for
temporal resolution | Sferics | Demonstrated by
OTD and LIS | Could be implemented on future GOES | Possible | | Soil Moisture
(P1, P2) | Spatial resolution and ability to penetrate vegetation are crucial | neutron probes,
lysimeters
(USDA, USGS,
FAO) | Approaching
readiness (done
from aircraft) | Highly desired,
subject to operat.
viability | Possible | | Sea Surface
Temperature (P2) | Both IR and µwave
observations needed
for all-weather
measurement | ships, buoys
(NOAA, WWW) | Excellent | NPOESS
Commitment | EUMETSAT coordination | | Sea Level Height (P2) | Prefer non-polar orbit
to avoid tidal aliasing | Tide gauges;
Global Geodetic
Network for
reference frame | Demonstrated | Included on one
NPOESS sat. but
polar orbit is
problematic | Continuation of past partnership likely | | Deep Ocean
Circulation (P3) | Requires in situ
oceanographic
observations | Ships and ARGO
floats (NOAA,
NSF) | WOCE, GODAE
research projects
provide initial data
base | Operational Global
Ocean Observing
System is being
envisaged | Multi-agency,
international
cooperation is
anticipated | | Total Column
Ozone (P4) | High long-term
accuracy needed for
trend studies | Dobson, Brewer,
FTIR, UV/VIS
(NASA, NOAA) | Excellent | NPOESS
commitment | EUMETSAT
coordination | | Trends in Carbon
sources and sinks
(P5) | CO ₂ and CH ₄ column
mapping is most
promising approach | Flask network
(NOAA),
Ameriflux/FluxNet
(DOE, USDA,
NASA) | Experimental
technique; needs
further
development | Unlikely | Possible | | Land Cover/Land
use Change (P5) | High spatial
resolution (few
meters) crucial | Land cover maps
(USGS), Veg.
Inventories (DOI,
USDA) | Excellent, need to reduce cost | Commercial data purchase likely | Possible with US industry | # Getting From Science Questions to Systematic Missions - Goal is to implement the Research Strategy - Provides questions, required data sets, and priority criteria - Science questions should be addressed in a logical order - Reflecting the progression from variability through prediction on the one hand, and the priority order of subquestions within each category on the other - Presented in table form, implies upper left to lower right - Priority criteria in the Research Strategy are applied to the questions (down arrow) to identify candidate missions, then to the candidate missions (up arrow) to set priorities - An end-to-end approach of providing leadership and investing in observational information systems, scientific research, modeling and data analysis to obtain answers to questions #### Establishing Priorities # Science Priority Criteria Science Return Benefit to Society Mandated Program Appropriate for NASA Partnership Opportunity* **Technology Readiness** Program Balance Cost/Budget Context * Includes potential for handoff to operational systems Implementation Priority Criteria # Logical Progression of Science Questions is Generally From Upper Left to Lower Right | Variability | Forcing | Response | Consequence | Prediction | |---|--|--|---|--| | Precipitation, evaporation & cycling of water changing? | Atmospheric constituents & solar radiation on climate? | Clouds & surface
hydrological
processes on
climate? | Weather variation related to climate variation? | Weather forecasting improvement? | | Global ocean circulation varying? | Changes in land cover & land use? | Ecosystem responses & affects on global carbon cycle? | Consequences in land cover & land use? | Predict transient climate variations? | | Global ecosystems changing? | Surface transformation? | Changes in global ocean circulation? | Coastal region change? | Trends in long term climate? | | Stratospheric ozone changing? | | Stratospheric trace constituent responses? | | Future
atmospheric
chemical
impacts? | | Ice cover mass changing? | | Sea level
affected by
climate change? | | Future concentrations of carbon dioxide and methane? | | Motions of
Earth & interior
processes? | | Pollution effects? | | | #### Candidate Systematic Missions Derived from Measurement Requirements Related to Selected Science Questions Scrubbed Considering Other Sources Ordered by Need Date to Achieve Continuity Consolidated Based on Like Measurement Technologies **Land Cover Inventory** Land Surface Vegetation Atmos. Temp & Humidity Global Precipitation Ocean Surf. Topog. Solar Irrad. Monitor **Total Column Aerosol** Aerosol Vertical Profile Ocean Color Energy Budget at TOA Ocean Surface Wind Total Column Ozone Ozone Vertical Profile Land Ice Topog. Stratospheric Constit. Stratospheric T/H₂O Land Cover Inventory Land Surface Vegetation Atmos. Temp & Humidity Global Precipitation Ocean Surf. Topog. Solar Irrad. Monitor Total Column Aerosol Aerosol Vertical Profile Ocean Surface Wind Total Column Ozone Ozone Vertical Profile Land Ice Topog. Stratospheric Constit Stratospheric T/H₂O Land Cover Inventory Land Surface Vegetation Atmos. Temp & Humidity Global Precipitation Ocean Surf. Topog. Ocean Surface Wind Solar Irrad. Monitor Aerosol Vertical Profile Ozone Vertical Profile Total Column Ozone Total Column Aerosol Stratospheric Constit. Stratospheric T/H₂O Land Ice Topog. Land Cover Inventory -- Landsat Land Surface Vegetation -- NPP Atmos. Temp & Humidity -- NPP Global Precipitation Ocean Surface Topography Ocean Surface Wind Solar Irradiance Monitor Ozone/Aerosol Vertical Profiles Total Column Ozone/Aerosol Strat. Constituents/Temperature/ H₂O Land Ice Topography - Depending on arrangements with partners, one or more missions could "come on" or "come off" the list - Solar irradiance IPO consideration of earlier flight of TSIM (copy of instrument on SORCE) - Ozone IPO desires to do early test of OMPS instrument (or part thereof) could eliminate need for NASA measurement (esp. if mapping part of OMPS tested on suitable orbit) note also commitment to earlier flight of NPOESS-C1 could eliminate requirement for NASA total ozone/aerosol measurement in ~2008 - Ocean color if NPOESS "third platform" were to appear unlikely, morning observations of ocean color might need to be revisited ### Table of Observational Parameters: Variability | Parameter/
Question | Implementation
Details | In Situ
Measurements | Technical
Readiness | Operational
Potential | Partnership
Potential | |---|---|--|--|---|---| | Atmospheric
Temperature
(V1) | Passive Sounding | Radiosondes
(NOAA, WWW,
NASA, NDSC) | Excellent | NPOESS
commitment | EUMETSAT coordination | | | Active Sounding
(GPS) | Global GPS
network | Full
demonstration
needed | NPOESS
commitment | EUMETSAT coordination | | Atmospheric
Water Vapor
(V1) | Passive Sounding | Radiosondes, Ly- ,
µwave (NASA,
NOAA, WWW) | Satisfactory | NPOESS
commitment | EUMETSAT coordination | | Global
Precipitation
(V1) | Requires 6-8 satellite
constellation for
time resolution | Rain gauges,
weather radar
(NOAA, WWW) | Demonstrated by
TRMM and
passive µwave
imagers | TBD | Excellent –
several needed | | Soil Moisture
(V1) | Requires relatively
low (L-band) _ wave
frequency | neutron probes,
lysimeters
(USDA, USGS,
FAO) | Very large real or
synthetic antenna
to be
demonstrated | Possible | TBD | | Ocean Surface
Topography (V2) | Prefer non-polar orbit
to avoid tidal aliasing | Tide gauges
(Global Geodedic
Network) | Demonstrated. Development needed for denser coverage | Included on one
NPOESS sat. but
polar orbit is
problematic | Continuation of
current
partnerships
likely | | Ocean Surface
Winds (V2) | Active µwave
technique preferred | ships, buoys
(NOAA, WWW) | Demonstrated by
NSCAT and
Seawinds | NPOESS need
nominally fulfilled
by passive sensor | Seawinds and
follow-on
cooperation with
Japan | | Sea Surface
Temperature
(V2) | Both IR and
microwave needed for
all-weather
observation | ships, buoys
(NOAA, WWW) | Excellent | NPOESS
Commitment | EUMETSAT coordination | | Sea Ice Extent
(V2) | Microwave radiometry
needed for all-weather
measurements | Ships, airborne
reconnaissance
(Navy, USCG,
NOAA) | Excellent | NPOESS
Commitment | NASDA
cooperation | | Terrestrial
Primary
Productivity (V3) | 1 km or better
resolution needed | Crop, forest inven.
(USDA, FAO,
LTER (NSF),
GTOS | Excellent | NPOESS
commitment | EUMETSAT coordination | | Marine Primary
Productivity (V3) | Very precise inter-
calibration is essential | NASA-SIMBIOS
time series studies | Demonstrated | Partially provided
by NPOESS | Cooperation with
Japan, Europe
possible | | Total Column
Ozone (V4) | High long-term
accuracy needed for
trend studies | Dobson, Brewer,
FTIR, UV/VIS
(NASA, NOAA) | Excellent | NPOESS
commitment | EUMETSAT
coordination | | Ozone Vertical
Profile (V4) | Good vertical
resolution needed near
tropopause | Ozonesondes, lidar,
µwave , IR, (NASA,
NOAA) | Excellent | NPOESS
commitment | Coordination potential exists | | Ice Surface
Topography (V5) | Excellent vertical
resolution and
accuracy needed for
mass balance studies | GPS (NASA, NSF) | ICEsat lidar
altimetry
demonstration
pending | Not currently an operational requirement | Coordination
with European
radar altimetry
satellite | | Gravity Field
(V6) | Requires extreme
precision | Geodetic networks | GRACE demo.
pending | DOD interest in
precise geoid | Possible | | Terrestrial
Reference Frame
(V6) | Derived mainly from
ground observation
and precision satellite
tracking | SLR and GPS
networks | Excellent | Multi-agency
infrastructure | Multi-national
ground network | | Motions of the
Earth's Interior
(V6) | Inferred from mult.
measurements
space/ground based | SLR, GPS, VLBI
networks,
magnetometer obs. | Excellent | Multi-agency
infrastructure | Excellent for
flights of
opportunity | ### Table of Observational Parameters: Forcing | Parameter /
Question | Implementation
Details | In Situ
Measurements | Technical
Readiness | Operational
Potential | Partnership
Potential | |---|---|--|---|--|--| | Total Solar
Irradiance (F1) | High absolute
accuracy, overlap of
successive records
required | global surface
networks
(BSRN, WRDC,
SURFRAD) | Excellent | NPOESS
Commitment | Possible | | Solar UV
Irradiance (F1) | Need for spectral
resolution and good
radiometric accuracy | USGCRP UV
network, NDSC
(multiagency) | Excellent | NPOESS
measurement
planned | Strong history of cooperation | | Stratospheric
Aerosol
Distribution (F1) | Good vertical
resolution and large
dynamic range
required | Lidar, backscatter-
sondes (NASA,
NOAA, NSF) | Excellent | NPOESS meas.
possible but
resolution is
problematic | Possible | | Total Aerosol
Amount (F1) | Global coverage over
ocean and land
needed | AERONET,
USDA network,
NOAA/BSRN,
DOE/ARM | Excellent | NPOESS
Commitment | Possible | | Aerosol
Properties (F1) | Need in situ and
ground-based
measurements | AERONET,
NOAA/CMDL,
airborne aerosol
spectrometers | Further development needed for space measur. | TBD | Possible,
important for
ground-based
measurements | | Sfc. Trace Gas
Concentration
(F1) | Ground-based
measurements fulfil
requirements | NASA AGAGE,
NOAA flask
network and CO ₂
meas. | Need simpler
instruments with
better time
resolution | NOAA flask
sampling network,
NASA
AGAGE | Helps support
ground network | | Volcanic Gas &
Ash Emissions
(F1) | Global observation of ash and gas plumes | In situ optical calibration | Further progress
needed to
characterize
tropospheric
constituents | Significant on account of impact on aviation | Possible | | Fire Occurrences
(F2) | Global observation of
infrared and vis/near-
ir; hyperspectral for
fuel load | Aeronet (NASA),
burn scar inven.
(USFS, int'1.), In
situ optical calib. | Excellent | Augmented
NPOESS EDR
requirement | Augmented
NPOESS EDR
requirement | | Trace Gas
Sources (F2) | CO ₂ column mapping is greatest priority | Flask network
(NOAA),
Ameriflux (DOE,
USDA, NASA),
FluxNet | Technical
developments
needed for
exploratory mission | Unlikely | TBD | | Land Cover/
Land Use
Inventories (F2) | High spatial
resolution required
(few tens of meters) | Land Cover Maps
(USGS), Veg.
Inventories (DOI,
USDA) | Excellent, need to reduce cost | Commercial data
purchase likely | Possible with US industry | | Surface Stress
and Deformation
(F2) | Special focus on active earthquake and volcanic regions | Regional GPS
networks,
geological obs. | Excellent | Joint support of ground arrays by local agencies | multi-national
support for
ground arrays | # Table of Observational Parameters: Response | Parameter /
Question | Implementation
Detail | In Situ
Measurements | Technical
Readiness | Operational
Potential | Partnership
Potential | |---|--|--|--|--|--| | Cloud System
Structure (R1) | Multispectral visible and IR radiometry | Radiosondes, lidar
(NASA, NOAA,
FAA) | Excellent | NOAA &
NPOESS
commitment | EUMETSAT and
Japan's
ADEOS/GLI | | Cloud Particle
Properties and
Distribution (R1) | Active sensor to resolve three-dimensional structure | none | Demonstration of
cloud radar and
lidar pending | Desirable; subject
to operational
viability | DOD is
contributing to
Cloudsat
project | | Earth radiation
Budget (R1) | Broadband radiometry | none | Excellent | Planned on
NPOESS | Possible | | Soil Moisture
(R1) | Spatial resolution and
ability to penetrate
vegetation are the
issues | neutron probes,
lysimeters
(USDA, USGS,
FAO) | Approaching
readiness (done
from aircraft) | Highly desired;
subject to oper.
viability | Likely with
European Space
Agency | | Snow Cover &
Accumulation
(R1) | Need to assess snow
depth or water
equivalent
quantitatively | Snow transects
(NOAA/NWS) | Awaiting demonstration | NPOESS
commitment for
snow cover | Possible | | Freeze-Thaw
Transition (R1) | Need to assess in all
cloud and vegetation
conditions | Not a routine
measurement | Awaiting demonstration | Desired; subject to operational viability | Possible | | Biomass (R2) | Based on resolving
canopy vertical
structure; requires
active lidar sensor | Crop/Timber yield
(USDA, DOI),
carbon database
(DOE) | Demonstration
pending (VCL) | TBD | Possible | | Marine
Productivity in
Coastal regions
(R2) | High spatial and
temporal resolutions
needed to resolve
specific events | NASA-SIMBIOS;
Coastal bio-optics
(NOAA, EPA) | Excellent | Possible NPOESS
derived product | International product inter-comparison | | Carbon Sources
and Sinks (R2) | CO ₂ , CH ₄ column
mapping is most
promising approach; | Flask network
(NOAA),
Ameriflux/Flux
Net (DOE, USDA,
NASA) | Experimental technique, needs further develop. | Unlikely | Possible | | Sea Surface
Salinity (R3) | Very high
radiometric precision
needed for passive
µwave observation | Ships and
moored/drifting
buoys
(NOAA/NSF) | Approaching
readiness (done
from aircraft) | Unfulfilled
NPOESS
requirement | Likely with
European Space
Agency | | Sea Ice Thickness
(R3) | Significance of ice
freeboard
observations remains
to be established | Moored buoys
(ONR) | High spatial
resolution radar;
develop. needed | Desirable, subject
to operational
viability | Possible with international/ commercial partners | | Atmospheric
Properties in
Tropopause
Region (R4) | Need ozone, water
vapor, temperature at
high vertical
resolution | Sondes (WWW,
NOAA) | Limb viewing
sensors not yet
demonstrated | Unlikely | Interest exists | | Polar ice sheet
velocity (R5) | Synthetic aperture
radar interferometry;
high latitude
coverage (polar orbit)
needed | GPS (NASA,
NSF) | Demonstrated | Government
/commercial
partnership
possible | Possible | | Tropospheric
Ozone and
Precursors (R6) | Need excellent
vertical resolution
through entire
troposphere, implies
active lidar sensor | Airborne in situ for
DC-8, R-2, WB-57 | Experimental technique, needs further develop. | TBD | Interest exists | ### Table of Observational Parameters: Consequences | Parameter /
Question | Implementation
Details | In Situ
Measurements | Technical
Readiness | Operational
Potential | Partnership
Potential | |---|--|---|--|---|--| | Global
Precipitation (C1) | Requires
Constellation for
Good Time
Resolution | raingauges,
weather radar
(NOAA, WWW) | Demonstrated via
TRMM | Limited | Excellent – several needed | | Ocean Surface
Winds (C1) | Active μwave technique | ships, buoys
(NOAA, WWW) | Demonstrated by
NSCAT and
SeaWinds | NPOESS need
nominally fulfilled
by passive sensor | Seawinds
cooperation with
Japan;
EUMETSAT | | | Passive µ wave
radiometry/polarimet
ry
probably sufficient
for meteo.
applications. | | Windsat/Coriolis
demonstration
funded by DOD,
USN, NPOESS | NPOESS
commitment | Possible | | Meteorological
Properties
Around Storms
(C1) | Requires vertical
profiling from a
geostationary
platform | Radiosondes
(NOAA, WWW) | Demonstration planned with GIFTS | May become
operational GOES
sensor if
successfully
demonstrated | Possible | | Lightning Rate (C1) | Requires
geostationary
implementation for
temporal resolution | Sferics | Demonstrated by OTD and LIS | Could be implemented on future GOES | Possible | | River Stage
Height/
Discharge Rate
(C1) | Requires high
precision, vertical
resolution, and
frequent sampling | River gauges
(USGS) | Capability
demonstrated by
Topex/Poseidon | TBD | TBD | | Primary
Productivity (C2) | 1 km or better
resolution needed | NASA-SIMBIOS,
GOOS, GTOS,
crop, forest
inventories
(USDA, FAO),
LTER (NSF) | Excellent | NPOESS
Commitment | EUMETSAT coordination | | Land Cover /
Land Use Change
(C2) | High spatial
resolution (few
meters) crucial | Land cover maps
(USGS), veg.
Inventories (DOI,
USDA) | Excellent, need to reduce cost | Commercial data
purchase likely | Possible with US industry | | Coastal Region
Properties and
Productivity (C3) | Multispectral
radiometry at high
spatial and temporal
resolution from GEO | Coastal
observations
(NOAA, EPA) | Excellent | Could be implemented on future GOES | Possible |